Recommended Youtube Ww2 Historian

Written by: Robert R. Russell on Monday, August 17, 2020.

TIK, formerly The Imperator Knight, makes long-form videos about lesser know WW2 battles. The early actions in the North African Campaign are exciting. I have one of his documentary playlists embedded below.

©2020 Robert R. Russell — All rights reserved


ZFS Backup Tool Part 6

Written by: Robert R. Russell on Friday, August 14, 2020.

Now that I can read and write a snapshot, how do I process a list of snapshots in a useful manner? First, let me define what I mean by a useful manner. I want the tool to keep a copy of all automatic snapshot on the source ZFS tree on the destination tree as an automatic snapshot is aged off of the source it needs to be aged off of the destination as well. It will transfer snapshots one at a time instead of transferring all of the intermediate snapshots at the same time; the ZFS send -i option versus the -I option.

The best data structure for this is a tree or graph. The tree starts with a list of yearly snapshots. Every snapshot has two slices of children—one for the child frequency snapshots older than it. The younger slice will be populated only if the current snapshot is the youngest child at its frequency strata. A picture demonstrating my idea follows this paragraph. I will delve into implementation details in the next part of the ZFS Backup Tool series.

©2020 Robert R. Russell — All rights reserved


ZFS Backup Tool Part 5

Written by: Robert R. Russell on Thursday, August 13, 2020.

Now that I can read a list of snapshots, I need to read a snapshot and transfer it to the destination. The three functions that allow me to do that are exec.StdinPipe(), exec.StdoutPipe(), and io.CopyBuffer().

The process consists of the following steps:

  1. Create an exec.Cmd representing the zfs send command
  2. Use exec.StdoutPipe() to connect a pipe to the output of the command created in step 1.
  3. Create an exec.Cmd representing the zfs receive command
  4. Use exec.StdinPipe() to connect a pipe to the input of the command created in step 3.
  5. Start both commands
  6. Use io.CopyBuffer() to read from the snapshot to the receiver.

You can view the code here.

©2020 Robert R. Russell — All rights reserved


Fall Cleaning Instead of Spring Cleaning

Written by: Robert R. Russell on Wednesday, August 12, 2020.

I spent yesterday and today cleaning out my bedroom to make room for this.

©2020 Robert R. Russell — All rights reserved


Here Is a Photo of My Cat

Written by: Robert R. Russell on Tuesday, August 11, 2020.

There will not be a bigger post today. So here is a photo of Callie.

©2020 Robert R. Russell — All rights reserved


Two Weeks Posting Challenge Review

Written by: Robert R. Russell on Monday, August 10, 2020.

When I rebooted my blog, yet again, I gave myself the personal challenge of writing at least one article per day. Except for August 3rd, 2020, I have met that challenge. Let’s see it continues.

©2020 Robert R. Russell — All rights reserved


Self Hosting a Git Server

Written by: Robert R. Russell on Sunday, August 9, 2020.

Which software to use?

With the ZFS backup tool, I want to host the code for it here on my website instead of GitHub. What options are available? If I want to host the bare repo, I can use ssh for write access and add a virtual host for apache so you can have read access. If I want a nice web interface, though, I need a different setup.

A bit of online searching shows four major self-hosted Git web frontends. They are GitLab, Gitea, GitBucket, and Gogs. GitLab and GitBucket are out because they require a lot of extra software to support the service. GitLab could almost qualify as its own Linux distro with a bit more work. GitBucket is nearly as bad. That leaves the two clones, Gogs and Gitea. Gitea is a fork of Gogs with more maintainers. The increase in maintainers gives Gitea a faster issue resolution, so I chose it.

System requirements

Gitea has very moderate system requirements. Golang, about 256MB of RAM, and optionally MariaDB, MySQL, or PostgreSQL. An external database is a recommendation for large sites. I will use MariaDB because I am already using it and have a working scheduled backup of my entire database server.

Installation

Since Ubuntu doesn’t have a current package for Gitea, I followed the From binary instructions on docs.gitea.io. I followed the MySQL portion of the Database preparation page to create the needed MariaDB database. I followed the Using Apache HTTPD as a reverse proxy section of the Reverse Proxies page to finish the setup.

The manual setup was quicker than the Docker setup I played with on my lab network.

You can explore my repositories by clicking the My Git Repositories link in the header menu on desktop or the dropdown menu on mobile.

©2020 Robert R. Russell — All rights reserved


Mustie1: Good Small Engine Channel

Written by: Robert R. Russell on Saturday, August 8, 2020.

Mustie1 does small engine repair videos. Most of his videos start with something simple that someone overlooked with the “dead” engine. He fixes that and usually cleans the engine as well.

Here are three videos where he fixed a forklift that someone abandoned because two previous mechanics wouldn’t follow their troubleshooting workflow to the end.





©2020 Robert R. Russell — All rights reserved


ZFS Backup Tool Part 4

Written by: Robert R. Russell on Friday, August 7, 2020.

Welcome to Part 4 of my series on my tool for backing up ZFS Snapshots to an external device. In this part, I am discussing how to exec a command and read its output.

To deal with external commands in Go, you use the os/exec package. The primary pieces of the package that I need for now are exec.Command() and CombinedOutput(). exec.Command() sets up the Command structure with the command and any arguments that I am passing to it.

var listCommand = exec.Command("zfs", "list", "-Hrt", "snapshot", "dpool")

That code creates a variable called listCommand, which is ready to run the command zfs with the arguments list, -Hrt, and snapshot as individual arguments.

var snapList, err = listCommand.CombinedOutput()

That line of code runs the command I previously prepared, puts both its Standard Output and Standard Error in a slice of bytes. If the command exited with an error code other than 0, CombinedOutput sets err to a non-nil value. snapList will have the Standard Error of the executed command, so printing snapList’s contents will be useful for debugging.

var snapScanner = bufio.NewScanner(bytes.NewReader(snapList))
	if err != nil {
		fmt.Println(listCommand)
		fmt.Println("Error trying to list snapshots:", err.Error())
		for snapScanner.Scan() {
			fmt.Println(snapScanner.Text())
		}
	}

I will need to use the more complicated IO redirection tools provided in the os/exec package for the zfs send and zfs receive commands. However, for a test run today, I can use a modification of the loop I used to print the output from zfs if it errored.

for snapScanner.Scan() {
		if snapshotLineRegex.MatchString(snapScanner.Text()) {
			var temp = strings.SplitN(snapScanner.Text(), "\t", 2)
			var snapshot = ParseSnapshot(temp[0])
			if snapshot != nil {
				fmt.Println("I found snapshot", snapshot.Name(), "at", snapshot.Path())
			}
    }
  }
}

©2020 Robert R. Russell — All rights reserved


ZFS Backup Tool Part 3

Written by: Robert R. Russell on Thursday, August 6, 2020.

Today’s project is parsing a snapshot into a custom datatype that gives us more accessible options to manipulate snapshots. First, the regular expression strings need to be moved into separate files so I can reference them across other files.

The essential parts of a snapshot are:

To parse a snapshot out of a string.

Below is a function that implements the listed requirements.

/*
ParseSnapshot parses a string into a Snapshot.

It returns nil on error.
*/
func ParseSnapshot(input string) *Snapshot {
	var snapshotOnly, err = regexp.Compile("^" + PoolNameRegex + "@" + ZfsSnapshotNameRegex + "$")
	if err != nil {
		return nil
	}
	if !snapshotOnly.MatchString(input) {
		return nil
	}
	var snapshotPieces []string = snapshotOnly.FindStringSubmatch(input)
	var theSnapshot = Snapshot{}
	theSnapshot.Interval = intervalStringToUInt(snapshotPieces[1])
	var year, month, day, hour, minute int
	year, err = strconv.Atoi(snapshotPieces[2])
	if err != nil {
		return nil
	}
	month, err = strconv.Atoi(snapshotPieces[3])
	if err != nil {
		return nil
	}
	day, err = strconv.Atoi(snapshotPieces[4])
	if err != nil {
		return nil
	}
	hour, err = strconv.Atoi(snapshotPieces[5])
	if err != nil {
		return nil
	}
	minute, err = strconv.Atoi(snapshotPieces[6])
	if err != nil {
		return nil
	}
	theSnapshot.TimeStamp = time.Date(year, time.Month(month), day, hour, minute, 0, 0, time.UTC)
	var splitInput []string = strings.Split(input, "@")
	if len(splitInput) != 2 {
		return nil
	}
	var paths []string = strings.Split(splitInput[0], "/")
	theSnapshot.pool = paths[0]
	if len(paths) > 1 {
		copy(theSnapshot.fsTree, paths[1:])
	}
	return &theSnapshot
}

func intervalStringToUInt(input string) uint64 {
	switch input {
	case "yearly":
		return 0
	case "monthly":
		return 1
	case "weekly":
		return 2
	case "daily":
		return 3
	case "hourly":
		return 4
	}
	return 5
}

Now that I can create a Snapshot structure I need some utility methods for them.

The following code will implement those utility methods.

/*
Path returns a string containing the path of the snapshot
*/
func (s Snapshot) Path() string {
	var temp strings.Builder
	temp.WriteString(s.pool)
	if len(s.fsTree) > 0 {
		for _, v := range s.fsTree {
			temp.WriteString("/" + v)
		}
	}
	return temp.String()
}

/*
Name returns a string containing the full name of snapshot
*/
func (s Snapshot) Name() string {
	var temp strings.Builder
	temp.WriteString("zfs-auto-snap_")
	temp.WriteString(intervalUIntToString(s.Interval) + "-")
	fmt.Fprintf(&temp, "%d-%d-%d-%d%d", s.TimeStamp.Year(), s.TimeStamp.Month(), s.TimeStamp.Day(), s.TimeStamp.Hour(), s.TimeStamp.Minute())
	return temp.String()
}

func intervalUIntToString(x uint64) string {
	switch x {
	case 0:
		return "yearly"
	case 1:
		return "monthly"
	case 2:
		return "weekly"
	case 3:
		return "daily"
	case 4:
		return "hourly"
	}
	return "frequent"
}

/*
String returns a string equal to s.Path() + "@" + s.Name() for Snapshot s
*/
func (s Snapshot) String() string {
	return s.Path() + "@" + s.Name()
}

/*
CompareSnapshotDates returns -2 if x occured before y and would include y in its interval
returns -1 if x occured before y
returns 0 if x and y are the same snapshot
returns +1 if y occured after x
err is non nill if the snapshots do not have the same path
*/
func CompareSnapshotDates(x Snapshot, y Snapshot) (int, error) {
	if x.Path() != y.Path() {
		return 0, errors.New("Can only compare snapshots with the same path")
	}
	if x.Interval == y.Interval {
		if x.TimeStamp.Equal(y.TimeStamp) {
			return 0, nil
		}
		if x.TimeStamp.Before(y.TimeStamp) {
			return -1, nil
		}
		return 1, nil
	}
	if x.Interval < y.Interval { // y is from a more frequent backup interval than x
		var interval time.Time
		switch x.Interval {
		case 0:
			interval = x.TimeStamp.AddDate(-1, 0, 0)
		case 1:
			interval = x.TimeStamp.AddDate(0, -1, 0)
		case 2:
			interval = x.TimeStamp.AddDate(0, 0, -7)
		case 3:
			interval = x.TimeStamp.AddDate(0, 0, -1)
		case 4:
			interval = x.TimeStamp.Add(time.Hour * -1)
		case 5:
			interval = x.TimeStamp.Add(time.Minute * -15)
		}
		if x.TimeStamp.Before(y.TimeStamp) {
			return 1, nil
		}
		if interval.Before(y.TimeStamp) {
			return -2, nil
		}
		return -1, nil
	}
	// y is from a less frequent backup interval than x
	if x.TimeStamp.Before(y.TimeStamp) {
		return -1, nil
	}
	if x.TimeStamp.After(y.TimeStamp) {
		return 1, nil
	}
	return 0, nil
}

You can get the entire source code for the tool below.

©2020 Robert R. Russell — All rights reserved